Acar, A., & Muraki, Y. (2011). Twitter for crisis communication: Lessons learned from Japan's tsunami disaster.
International Journal of Web Based Communities,
7(3), 392-402.
https://doi.org/10.1504/IJWBC.2011.041206
Blevins, J. L., Edgerton, E., Jason, D. P., & Lee, J. J. (2021). Shouting into the wind: Medical science versus “B.S.” in the Twitter maelstrom of politics and misinformation about hydroxychloroquine.
Social Media + Society,
7(2).
https://doi.org/10.1177/20563051211024977
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008, Oct). Fast unfolding of communities in large networks.
Journal of statistical mechanics: theory and experiment,
2008(10).
https://doi.org/10.1088/1742-5468/2008/10/P10008
Borra, E., & Rieder, B. (2014). Programmed method: Developing a toolset for capturing and analyzing tweets.
Aslib Journal of Information Management,
66(3), 262-278.
https://doi.org/10.1108/AJIM-09-2013-0094
Bruns, A., Highfield, T., & Burgess, J. (2013). The Arab spring and social media audiences: English and Arabic Twitter users and their networks.
American Behavioral Scientist,
57(7), 871-898.
Chen, J., & Wang, Y. (2021). Social media use for health purposes: Systematic review [Review].
Journal of Medical Internet Research,
23(5).
https://doi.org/10.2196/17917
Chen, W., Tu, F., & Zheng, P. (2017). A transnational networked public sphere of air pollution: Analysis of a Twitter network of pm2.5 from the risk society perspective.
Information, Communication & Society,
20(7), 1005-1023.
https://doi.org/10.1080/1369118X.2017.1303076
Choi, S., & Park, H. W. (2014). An exploratory approach to a Twitter-based community centered on a political goal in South Korea: Who organized it, what they shared, and how they acted.
New Media & Society,
16(1), 129-148.
https://doi.org/10.1177/1461444813487956
Choi, S., Rani, N., & Arroyo, R. E. (2021). Observing coronavirus information on YouTube: Network and content analysis of the U.S., Korea, India, and Mexico.
Health & New Media Research,
5(1), 25-58.
https://doi.org/10.22720/hnmr.2020.5.1.025
Fuchs, C. (2021). Social media: A critical introduction. Sage.
Getchell, M. C., & Sellnow, T. L. (2016). A network analysis of official Twitter accounts during the West Virginia water crisis.
Computers in Human Behavior,
54, 597-606.
https://doi.org/10.1016/j.chb.2015.06.044
Guidry, J. P. D., Jin, Y., Orr, C. A., Messner, M., & Meganck, S. (2017). Ebola on Instagram and Twitter: How health organizations address the health crisis in their social media engagement.
Public Relations Review,
43(3), 477-486.
https://doi.org/10.1016/j.pubrev.2017.04.009
Guidry, J. P. D., Meganck, S. L., Lovari, A., Messner, M., Medina-Messner, V., Sherman, S., & Adams, J. (2020). Tweeting about #diseases and #publichealth: Communicating global health issues across nations.
Health Communication,
35(9), 1137-1145.
https://doi.org/10.1080/10410236.2019.1620089
Hagen, L., Keller, T., Neely, S., DePaula, N., & Robert-Cooperman, C. (2018, Oct). Crisis communications in the age of social media:A network analysis of zika-related tweets.
Social Science Computer Review,
36(5), 523-541.
https://doi.org/10.1177/0894439317721985
Hallin, D. C., & Mancini, P. (2004). Comparing media systems: Three models of media and politics. Cambridge:Cambridge University Press.
Hänska, M., & Bauchowitz, S. (2019). Can social media facilitate a European public sphere? Transnational communication and the Europeanization of Twitter during the eurozone crisis.
Social Media + Society,
5(3), 2056305119854686.
https://doi.org/10.1177/2056305119854686
Hellsten, I., Jacobs, S., & Wonneberger, A. (2019, Mar). Active and passive stakeholders in issue arenas: A communication network approach to the bird flu debate on Twitter.
Public Relations Review,
45(1), 35-48.
https://doi.org/10.1016/j.pubrev.2018.12.009
Himelboim, I. (2017). Social network analysis (social media). In J. Matthes (Ed.), The international encyclopedia of communication research methods (pp. 1-15). Wiley.
Himelboim, I., Smith, M. A., Rainie, L., Shneiderman, B., & Espina, C. (2017, Jan-Mar). Classifying Twitter topic-networks using social network analysis.
Social Media + Society,
3(1).
https://doi.org/10.1177/2056305117691545
Househ, M. (2016, Sep). Communicating Ebola through social media and electronic news media outlets: A cross-sectional study.
Health Informatics Journal,
22(3), 470-478.
https://doi.org/10.1177/1460458214568037
Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software.
PloS one,
9(6), e98679,
Kamiński, M., Szymańska, C., & Nowak, J. K. (2021). Whose tweets on COVID-19 gain the most attention: Celebrities, political, or scientific authorities?
Cyberpsychology, Behavior, and Social Networking,
24(2), 123-128.
Kim, J.-H., An, J. A.-R., Oh, S. J., Oh, J., & Lee, J.-K. (2022, March 5). Emerging COVID-19 success story: South Korea learned the lessons of MERS. Our World in Data.
https://ourworldindata.org/covid-exemplar-south-korea
Larson, H. J. (2020). Stuck: How vaccine rumors start-and why they don't go away. Oxford University Press, USA.
Lwin, M. O., Lu, J., Sheldenkar, A., Schulz, P. J., Shin, W., Gupta, R., & Yang, Y. (2020). Global sentiments surrounding the COVID-19 pandemic on Twitter: Analysis of Twitter trends.
JMIR Public Health Surveillance,
6(2).
https://doi.org/10.2196/19447
McInnes, C. J., & Hornmoen, H. (2018). ‘Add Twitter and stir': The use of Twitter by public authorities in Norway and UK during the 2014-15 ebola outbreak.
Observatorio (OBS*),
12(2), 23-46.
http://dx.doi.org/10.15847/obsOBS12220181173
Mitchell, S. S. D., & Beanlands, J. (2022). “The mask is not for you” : A framing analysis of pro- and anti-mask sentiment on Twitter.
Health & New Media Research,
6(1), 1-34.
Mittelmeier, J., & Cockayne, H. (2022). Global representations of international students in a time of crisis: A qualitative analysis of Twitter data during COVID-19.
International Studies in Sociology of Education, 1-24.
https://doi.org/10.1080/09620214.2022.2042357
Mocanu, D., Baronchelli, A., Perra, N., Gonçalves, B., Zhang, Q., & Vespignani, A. (2013). The Twitter of babel: Mapping world languages through microblogging platforms.
PloS one,
8(4), e61981.
https://doi.org/10.1371/journal.pone.0061981
Newman, N., Fletcher, R., Schulz, A., Andı, S., Robertson, C. T., & Nielsen, R. K. (2021). Reuters institute digital news report 2021.
https://bit.ly/3EyJuQD
Nilsen, A. C. E., & Skarpenes, O. (2022). Coping with COVID-19. Dugnad: A case of the moral premise of the Norwegian welfare state.
International Journal of Sociology and Social Policy,
42(3/4), 262-275.
https://doi.org/10.1108/IJSSP-07-2020-0263
Okocha, D. O., & Akpe, S. M. (2022). Fake news and misinformation on covid-19: Implications for media credibility in nigeria.
Health & New Media Research,
6(1), 139-161.
Papacharissi, Z. (2015). Affective politics: Sentiment, technology, and politics. Oxford:Oxford University Press.
Park, H., Reber, B. H., & Chon, M.-G. (2016, 02 01). Tweeting as health communication: Health organizations’ use of Twitter for health promotion and public engagement.
Journal of Health Communication,
21(2), 188-198.
https://doi.org/10.1080/10810730.2015.1058435
PARK, H. W., & Thelwall, M. (2008). Developing network indicators for ideological landscapes from the political blogosphere in South Korea.
Journal of Computer-Mediated Communication,
13(4), 856-879.
https://doi.org/10.1111/j.1083-6101.2008.00422.x
Park, S., Joa, C. Y., & Labbé, B. (2022). Who will help you to practice good health habits and who will give you eating disorders? Analysis of weightwatchers Twitter network.
Health & New Media Research,
6(1), 35-64.
Poell, T., & Darmoni, K. (2012). Twitter as a multilingual space: The articulation of the Tunisian revolution through #sidibouzid.
NECSUS-European Journal of Media Studies,
1.
Rhee, J. W., Cho, H. J., Song, H. J., & Jung, J. H. (2011). South Korean media system: Toward a democratization model. Korean Social Sciences Review (KSSR), 1.
Rosenberg, H., Syed, S., & Rezaie, S. (2020). The Twitter pandemic: The critical role of Twitter in the dissemination of medical information and misinformation during the COVID-19 pandemic.
Canadian Journal of Emergency Medicine,
22(4), 418-421.
https://doi.org/10.1017/cem.2020.361
Sachs, J. D., Karim, S. S. A., Aknin, L., Allen, J., Brosbøl, K., Colombo, F., Barron, G. C., Espinosa, M. F., Gaspar, V., & Gaviria, A. (2022). The lancet commission on lessons for the future from the COVID-19 pandemic.
The Lancet,
400(10359), 1224-1280.
Schünemann, W. J. (2020). Ready for the world? Measuring the (trans-) national quality of political issue publics on Twitter.
Media and Communication,
8(4), 40-52.
Syvertsen, T., Enli, G., Mjøs, O. J., & Moe, H. (2014).
The media welfare state: Nordic media in the digital era. Ann Arbor:University of Michigan Press:
https://bit.ly/3xItiuG
Tagliacozzo, S., Albrecht, F., & Ganapati, N. E. (2021, Jun). International perspectives on COVID-19 communication ecologies: Public health agencies’ online communication in Italy, Sweden, and the United States.
American Behavioral Scientist,
65(7), 934-955.
https://doi.org/10.1177/0002764221992832
Takhteyev, Y., Gruzd, A., & Wellman, B. (2012). Geography of Twitter networks.
Social networks,
34(1), 73-81.
Vaccari, C., Valeriani, A., Barberá, P., Bonneau, R., Jost, J. T., Nagler, J., & Tucker, J. A. (2015). Political expression and action on social media: Exploring the relationship between lower- and higher-threshold political activities among Twitter users in Italy.
Journal of Computer-Mediated Communication,
20(2), 221-239.
https://doi.org/10.1111/jcc4.12108
Vijaykumar, S., Nowak, G., Himelboim, I., & Jin, Y. (2018, May). Virtual zika transmission after the first U.S. Case: Who said what and how it spread on Twitter.
American Journal of Infection Control,
46(5), 549-557.
https://doi.org/10.1016/j.ajic.2017.10.015
Yang, K.-C., Pierri, F., Hui, P.-M., Axelrod, D., Torres-Lugo, C., Bryden, J., & Menczer, F. (2021). The COVID-19 infodemic: Twitter versus Facebook.
Big Data & Society,
8, (1).
https://doi.org/10.1177/20539517211013861